Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.900
Filter
1.
Nat Commun ; 15(1): 2931, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575566

ABSTRACT

Cystathionine beta-synthase (CBS) is an essential metabolic enzyme across all domains of life for the production of glutathione, cysteine, and hydrogen sulfide. Appended to the conserved catalytic domain of human CBS is a regulatory domain that modulates activity by S-adenosyl-L-methionine (SAM) and promotes oligomerisation. Here we show using cryo-electron microscopy that full-length human CBS in the basal and SAM-bound activated states polymerises as filaments mediated by a conserved regulatory domain loop. In the basal state, CBS regulatory domains sterically block the catalytic domain active site, resulting in a low-activity filament with three CBS dimers per turn. This steric block is removed when in the activated state, one SAM molecule binds to the regulatory domain, forming a high-activity filament with two CBS dimers per turn. These large conformational changes result in a central filament of SAM-stabilised regulatory domains at the core, decorated with highly flexible catalytic domains. Polymerisation stabilises CBS and reduces thermal denaturation. In PC-3 cells, we observed nutrient-responsive CBS filamentation that disassembles when methionine is depleted and reversed in the presence of SAM. Together our findings extend our understanding of CBS enzyme regulation, and open new avenues for investigating the pathogenic mechanism and therapeutic opportunities for CBS-associated disorders.


Subject(s)
Cystathionine beta-Synthase , Methionine , Humans , Cystathionine beta-Synthase/metabolism , Cryoelectron Microscopy , S-Adenosylmethionine/metabolism , Catalytic Domain
2.
Biochem J ; 481(8): 569-585, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38563463

ABSTRACT

Homocystinuria is a rare disease caused by mutations in the CBS gene that results in a deficiency of cystathionine ß-synthase (CBS). CBS is an essential pyridoxal 5'-phosphate (PLP)-dependent enzyme in the transsulfuration pathway, responsible for combining serine with homocysteine to produce cystathionine, whose activity is enhanced by the allosteric regulator S-adenosylmethionine (SAM). CBS also plays a role in generating hydrogen sulfide (H2S), a gaseous signaling molecule with diverse regulatory functions within the vascular, nervous, and immune systems. In this study, we present the clinical and biochemical characterization of two novel CBS missense mutations that do not respond to pyridoxine treatment, namely c.689T > A (L230Q) and 215A > T (K72I), identified in a Chinese patient. We observed that the disease-associated K72I genetic variant had no apparent effects on the spectroscopic and catalytic properties of the full-length enzyme. In contrast, the L230Q variant expressed in Escherichia coli did not fully retain heme and when compared with the wild-type enzyme, it exhibited more significant impairments in both the canonical cystathionine-synthesis and the alternative H2S-producing reactions. This reduced activity is consistent with both in vitro and in silico evidence, which indicates that the L230Q mutation significantly decreases the overall protein's stability, which in turn, may represent the underlying cause of its pathogenicity.


Subject(s)
Cystathionine beta-Synthase , Homocystinuria , Mutation, Missense , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/chemistry , Cystathionine beta-Synthase/metabolism , Homocystinuria/genetics , Homocystinuria/metabolism , Homocystinuria/enzymology , Humans , Male , Female
3.
Exp Cell Res ; 437(1): 114007, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38499142

ABSTRACT

Gastric cancer metastasis is a major cause of poor prognosis. Our previous research showed that methionine restriction (MR) lowers the invasiveness and motility of gastric carcinoma. In this study, we investigated the particular mechanisms of MR on gastric carcinoma metastasis. In vitro, gastric carcinoma cells (AGS, SNU-5, MKN7, KATO III, SNU-1, and MKN45) were grown in an MR medium for 24 h. In vivo, BALB/c mice were given a methionine-free (Met-) diet. Transwell assays were used to investigate cell invasion and migration. The amounts of Krüppel like factor 10 (KLF10) and cystathionine ß-synthase (CBS) were determined using quantitative real-time PCR and Western blot. To determine the relationship between KLF10 and CBS, chromatin immunoprecipitation and a dual-luciferase reporter experiment were used. Hematoxylin-eosin staining was used to detect lung metastasis. Liquid chromatography-mass spectrometry was used to determine cystathionine content. MR therapy had varying effects on the invasion and migration of gastric carcinoma cells AGS, SNU-5, MKN7, KATO III, SNU-1, and MKN45. KLF10 was highly expressed in AGS cells but poorly expressed in KATO III cells. KLF10 improved MR's ability to prevent gastric carcinoma cell invasion and migration. In addition, KLF10 may interact with CBS, facilitating transcription. Further detection revealed that inhibiting the KLF10/CBS-mediated trans-sulfur pathway lowered Met-'s inhibitory effect on lung metastasis development. KLF10 transcription activated CBS, accelerated the trans-sulfur pathway, and increased gastric carcinoma cells' susceptibility to MR.


Subject(s)
Carcinoma , Lung Neoplasms , Stomach Neoplasms , Mice , Animals , Methionine/metabolism , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Stomach Neoplasms/pathology , Racemethionine , Sulfur , Lung Neoplasms/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Early Growth Response Transcription Factors/metabolism
4.
Redox Biol ; 71: 103118, 2024 May.
Article in English | MEDLINE | ID: mdl-38490069

ABSTRACT

The induction of ferroptosis is promising for cancer therapy. However, the mechanisms enabling cancer cells to evade ferroptosis, particularly in low-cystine environments, remain elusive. Our study delves into the intricate regulatory mechanisms of Activating transcription factor 3 (ATF3) on Cystathionine ß-synthase (CBS) under cystine deprivation stress, conferring resistance to ferroptosis in colorectal cancer (CRC) cells. Additionally, our findings establish a positively correlation between this signaling axis and CRC progression, suggesting its potential as a therapeutic target. Mechanistically, ATF3 positively regulates CBS to resist ferroptosis under cystine deprivation stress. In contrast, the suppression of CBS sensitizes CRC cells to ferroptosis through targeting the mitochondrial tricarboxylic acid (TCA) cycle. Notably, our study highlights that the ATF3-CBS signaling axis enhances ferroptosis-based CRC cancer therapy. Collectively, the findings reveal that the ATF3-CBS signaling axis is the primary feedback pathway in ferroptosis, and blocking this axis could be a potential therapeutic approach for colorectal cancer.


Subject(s)
Colorectal Neoplasms , Ferroptosis , Humans , Cystathionine beta-Synthase/metabolism , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Ferroptosis/genetics , Cystine , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism
5.
Clin Exp Hypertens ; 46(1): 2328147, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38488417

ABSTRACT

BACKGROUND: Several studies indicate that the cystathionine ß-synthase (CBS) gene T833C, G919A and 844ins68 polymorphisms in the 8th exon region may be correlated with coronary artery disease (CAD) susceptibility, but the results have been inconsistent and inconclusive. Thus, a meta-analysis was conducted to provide a comprehensive estimate of these associations. METHODS: On the basis of searches in the PubMed, EMBASE, Cochrane Library, Wanfang, VIP, and CNKI databases, we selected 14 case - control studies including 2123 cases and 2368 controls for this meta-analysis. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated accordingly using a fixed-effect or random-effect model. RESULTS: The results indicated an increased risk between the CBS T833C gene polymorphisms and susceptibility to CAD under the dominant model (CC+CT vs. TT: OR = 1.92, 95% CI: 1.11 ~ 3.32), recessive model (CC vs. CT+TT: OR = 1.88, 95% CI: 1.17 ~ 3.03), and homozygous model (CC vs. TT: OR = 2.46, 95% CI: 1.04 ~ 5.83). In these three genetic models, no significant association was identified for CBS G919A (AA+AG vs. GG: OR = 1.48, 95% CI: 0.45 ~ 4.82),(AA vs. AG+GG: OR = 1.58, 95% CI: 0.93 ~ 2.70),(AA vs. GG: OR = 1.66, 95% CI: 0.40 ~ 6.92) or CBS 844ins68 (II+ID vs. DD: OR = 1.04, 95% CI: 0.80 ~ 1.35),(II vs. ID+DD: OR = 1.09, 95% CI: 0.51 ~ 2.36),(II vs. DD: OR = 1.10, 95% CI: 0.51 ~ 2.39). CONCLUSIONS: This meta-analysis suggests that the CBS T833C gene polymorphism is significantly associated with the risk of CAD and it shows a stronger association in Asian populations. Individuals with the C allele of the CBS gene T833C polymorphism might be particularly susceptible to CAD.


Subject(s)
Coronary Artery Disease , Humans , Coronary Artery Disease/genetics , Cystathionine beta-Synthase/genetics , Polymorphism, Genetic , Homozygote , Exons/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics
6.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542274

ABSTRACT

In adult fish, neurogenesis occurs in many areas of the brain, including the cerebellum, with the ratio of newly formed cells relative to the total number of brain cells being several orders of magnitude greater than in mammals. Our study aimed to compare the expressions of aromatase B (AroB), glutamine synthetase (GS), and cystathionine-beta-synthase (CBS) in the cerebellum of intact juvenile chum salmon, Oncorhynchus keta. To identify the dynamics that determine the involvement of AroB, GS, and CBS in the cellular mechanisms of regeneration, we performed a comprehensive assessment of the expressions of these molecular markers during a long-term primary traumatic brain injury (TBI) and after a repeated acute TBI to the cerebellum of O. keta juveniles. As a result, in intact juveniles, weak or moderate expressions of AroB, GS, and CBS were detected in four cell types, including cells of the neuroepithelial type, migrating, and differentiated cells (graphic abstract, A). At 90 days post injury, local hypercellular areas were found in the molecular layer containing moderately labeled AroB+, GS+, and CBS+ cells of the neuroepithelial type and larger AroB+, GS+, and CBS+ cells (possibly analogous to the reactive glia of mammals); patterns of cells migration and neovascularization were also observed. A repeated TBI caused the number of AroB+, GS+, and CBS+ cells to further increase; an increased intensity of immunolabeling was recorded from all cell types (graphic abstract, C). Thus, the results of this study provide a better understanding of adult neurogenesis in teleost fishes, which is expected to clarify the issue of the reactivation of adult neurogenesis in mammalian species.


Subject(s)
Oncorhynchus keta , Animals , Glutamate-Ammonia Ligase , Cystathionine , Aromatase , Cystathionine beta-Synthase , Cerebellum , Mammals
7.
Biomolecules ; 14(2)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38397425

ABSTRACT

S-allyl-L-cysteine (SAC) is a sulfur compound present in fresh garlic. The reference literature describes its anticancer, antioxidant and neuroprotective effects. Breast cancer is infamously known as one of the most commonly diagnosed malignancies among women worldwide. Its morbidity and mortality make it reasonable to complete and expand knowledge on this cancer's characteristics. Hydrogen sulfide (H2S) and its naturally occurring donors are well-known investigation subjects for diverse therapeutic purposes. This study was conducted to investigate the SAC antiproliferative potential and effect on three enzymes involved in H2S metabolism: 3-mercaptopyruvate sulfurtransferase (MPST), cystathionine γ-lyase (CTH), and cystathionine ß-synthase (CBS). We chose the in vitro cellular model of human breast adenocarcinomas: MCF-7 and MDA-MB-231. The expression of enzymes after 2, 4, 6, 8, and 24 h incubation with 2.24 mM, 3.37 mM, and 4.50 mM SAC concentrations was examined. The number of living cells was determined by the MTS assay. Changes in cellular plasma membrane integrity were measured by the LDH test. Expression changes at the protein level were analyzed using Western blot. A significant decrease in viable cells was registered for MCF-7 cells after all incubation times upon 4.50 mM SAC exposure, and after 6 and 24 h only in MDA-MB-231 upon 4.50 mM SAC. In both cell lines, the MPST gene expression significantly increased after the 24 h incubation with 4.50 mM SAC. S-allyl-L-cysteine had opposite effects on changes in CTH and CBS expression in both cell lines. In our research model, we confirmed the antiproliferative potential of SAC and concluded that our studies provided current information about the increase in MPST gene expression mediated by S-allyl-L-cysteine in the adenocarcinoma in vitro cellular model for the MCF-7 and MDA-MB-231 cell lines. Further investigation of this in vitro model can bring useful information regarding sulfur enzyme metabolism of breast adenocarcinoma and regulating its activity and expression (gene silencing) in anticancer therapy.


Subject(s)
Adenocarcinoma , Breast Neoplasms , Cysteine/analogs & derivatives , Humans , Female , Cysteine/pharmacology , Cysteine/metabolism , MCF-7 Cells , MDA-MB-231 Cells , Cystathionine beta-Synthase/metabolism , Cell Proliferation , Breast Neoplasms/drug therapy
8.
Commun Biol ; 7(1): 9, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172561

ABSTRACT

There are limited therapeutic options for patients with advanced prostate cancer (PCa). We previously found that heat shock factor 1 (HSF1) expression is increased in PCa and is an actionable target. In this manuscript, we identify that HSF1 regulates the conversion of homocysteine to cystathionine in the transsulfuration pathway by altering levels of cystathionine-ß-synthase (CBS). We find that HSF1 directly binds the CBS gene and upregulates CBS mRNA levels. Targeting CBS decreases PCa growth and induces tumor cell death while benign prostate cells are largely unaffected. Combined inhibition of HSF1 and CBS results in more pronounced inhibition of PCa cell proliferation and reduction of transsulfuration pathway metabolites. Combination of HSF1 and CBS knockout decreases tumor size for a small cell PCa xenograft mouse model. Our study thus provides new insights into the molecular mechanism of HSF1 function and an effective therapeutic strategy against advanced PCa.


Subject(s)
Cystathionine , Prostatic Neoplasms , Male , Humans , Mice , Animals , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Cell Proliferation , Prostatic Neoplasms/genetics , Heat-Shock Response
9.
Redox Biol ; 70: 103034, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38211443

ABSTRACT

Cytokine-like protein 1 (CYTL1) expression is deliberately downregulated during the progression of multiple types of cancers, especially breast cancer. However, the metabolic characteristics of cancer progression remain unclear. Here, we uncovered a risk of breast cancer cells harboring low CYTL1 expression, which is metabolically controlled during malignant progression. We performed metabolism comparison and revealed that breast cancer cells with low CYTL1 expression have highly suppressed transsulfuration activity that is driven by cystathionine ß-synthase (CBS) and contributes to de novo cysteine synthesis. Mechanistically, CYTL1 activated Nrf2 by promoting autophagic Keap1 degradation, and Nrf2 subsequently transactivated CBS expression. Due to the lack of cellular cysteine synthesis, breast cancer cells with low CYTL1 expression showed hypersensitivity to system xc- blockade-induced ferroptosis in vitro and in vivo. Silencing CBS counteracted CYTL1-mediated ferroptosis resistance. Our results show the importance of exogeneous cysteine in breast cancer cells with low CYTL1 expression and highlight a potential metabolic vulnerability to target.


Subject(s)
Breast Neoplasms , Ferroptosis , Humans , Female , Kelch-Like ECH-Associated Protein 1/metabolism , Breast Neoplasms/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Cysteine , Cystathionine beta-Synthase/metabolism , Blood Proteins/metabolism , Cytokines/metabolism
10.
Free Radic Biol Med ; 210: 13-24, 2024 01.
Article in English | MEDLINE | ID: mdl-37951283

ABSTRACT

Cystathionine-ß-synthase (CBS) catalyzes the first step of the transsulfuration pathway. The role of host-derived CBS in Staphylococcus aureus (S. aureus)-induced udder infection remains elusive. Herein, we report that S. aureus infection enhances the expression of CBS in mammary epithelial cells in vitro and in vivo. A negative correlation is present between the expression of CBS and inflammation after employing a pharmacological inhibitor/agonist of CBS. In addition, CBS achieves a fine balance between eliciting sufficient protective innate immunity and preventing excessive damage to cells and tissues preserving the integrity of the blood-milk barrier (BMB). CBS/H2S reduces bacterial load by promoting the generation of antibacterial substances (ROS, RNS) and inhibiting apoptosis, as opposed to relying solely on intense inflammatory reactions. Conversely, H2S donor alleviate inflammation via S-sulfhydrating HuR. Finally, CBS/H2S promotes the expression of Abcb1b, which in turn strengthens the integrity of the BMB. The study described herein demonstrates the importance of CBS in regulating the mammary immune response to S. aureus. Increased CBS in udder tissue modulates excessive inflammation, which suggests a novel target for drug development in the battle against S. aureus and other infections.


Subject(s)
Cystathionine beta-Synthase , Hydrogen Sulfide , Animals , Humans , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Staphylococcus aureus/metabolism , Cystathionine , Mammary Glands, Animal/metabolism , Inflammation , Hydrogen Sulfide/metabolism
11.
Can J Physiol Pharmacol ; 102(2): 105-115, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37979203

ABSTRACT

Previous studies from our laboratory revealed that the gaseous molecule hydrogen sulfide (H2S), a metabolic product of epigenetics, involves trans-sulfuration pathway for ensuring metabolism and clearance of homocysteine (Hcy) from body, thereby mitigating the skeletal muscle's pathological remodeling. Although the master circadian clock regulator that is known as brain and muscle aryl hydrocarbon receptor nuclear translocator like protein 1 (i.e., BMAL 1) is associated with S-adenosylhomocysteine hydrolase (SAHH) and Hcy metabolism but how trans-sulfuration pathway is influenced by the circadian clock remains unexplored. We hypothesize that alterations in the functioning of circadian clock during sleep and wake cycle affect skeletal muscle's biology. To test this hypothesis, we measured serum matrix metalloproteinase (MMP) activities using gelatin gels for analyzing the MMP-2 and MMP-9. Further, employing casein gels, we also studied MMP-13 that is known to be influenced by the growth arrest and DNA damage-45 (GADD45) protein during sleep and wake cycle. The wild type and cystathionine ß synthase-deficient (CBS-/+) mice strains were treated with H2S and subjected to measurement of trans-sulfuration factors from skeletal muscle tissues. The results suggested highly robust activation of MMPs in the wake mice versus sleep mice, which appears somewhat akin to the "1-carbon metabolic dysregulation", which takes place during remodeling of extracellular matrix during muscular dystrophy. Interestingly, the levels of trans-sulfuration factors such as CBS, cystathionine γ lyase (CSE), methyl tetrahydrofolate reductase (MTHFR), phosphatidylethanolamine N-methyltransferase (PEMT), and Hcy-protein bound paraoxonase 1 (PON1) were attenuated in CBS-/+ mice. However, treatment with H2S mitigated the attenuation of the trans-sulfuration pathway. In addition, levels of mitochondrial peroxisome proliferator-activated receptor-gamma coactivator 1-α (PGC 1-α) and mitofusin-2 (MFN-2) were significantly improved by H2S intervention. Our findings suggest participation of the circadian clock in trans-sulfuration pathway that affects skeletal muscle remodeling and mitochondrial regeneration.


Subject(s)
Circadian Clocks , Hydrogen Sulfide , Animals , Mice , Hydrogen Sulfide/metabolism , Cystathionine beta-Synthase , Muscle, Skeletal/metabolism , Gels , Cystathionine gamma-Lyase/metabolism , Phosphatidylethanolamine N-Methyltransferase
12.
Anal Biochem ; 687: 115434, 2024 04.
Article in English | MEDLINE | ID: mdl-38141799

ABSTRACT

Recent studies have revealed the role of endogenous hydrogen sulfide (H2S) in the development of breast cancer. The capacity of cells to generate H2S and the activity and expression of the main enzymes (cystathionine beta synthase; CBS, cystathionase γ-lyase; CGL, 3-mercaptopyruvate sulfurtransferase; MPST and thiosulfate sulfurtransferase; TST) involved in H2S metabolism were analyzed using an in vitro model of a non-tumourigenic breast cell line (MCF-12A) and a human breast adenocarcinoma cell line (MCF-7). In both cell lines, MPST, CGL, and TST expression was confirmed at the mRNA (RT-PCR) and the protein (Western Blot) level, while CBS expression was detected only in MCF-7 cells. Elevated levels of GSH, sulfane sulfur and increased CBS and TST activity were presented in the MCF-7 compared to the MCF-12A cells. It appears that cysteine might be mainly a substrate for GSH synthesis in breast adenocarcinoma. Increased capacity of the cells to generate H2S was shown for MCF-12A compared to MCF-7 cell line. Results suggest an important function of CBS in H2S metabolism in breast adenocarcinoma. The presented work may contribute to further research on new therapeutic possibilities for breast cancer - one of the most frequently diagnosed types of cancer among women.


Subject(s)
Adenocarcinoma , Breast Neoplasms , Hydrogen Sulfide , Humans , Female , MCF-7 Cells , Hydrogen Sulfide/metabolism , Cystathionine beta-Synthase/metabolism
13.
Mol Cell Biol ; 43(12): 664-674, 2023.
Article in English | MEDLINE | ID: mdl-38051092

ABSTRACT

Homocystinuria (HCU), an inherited metabolic disorder caused by lack of cystathionine beta-synthase (CBS) activity, is chiefly caused by misfolding of single amino acid residue missense pathogenic variants. Previous studies showed that chemical, pharmacological chaperones or proteasome inhibitors could rescue function of multiple pathogenic CBS variants; however, the underlying mechanisms remain poorly understood. Using Chinese hamster DON fibroblasts devoid of CBS and stably overexpressing human WT or mutant CBS, we showed that expression of pathogenic CBS variant mostly dysregulates gene expression of small heat shock proteins HSPB3 and HSPB8 and members of HSP40 family. Endoplasmic reticulum stress sensor BiP was found upregulated with CBS I278T variant associated with proteasomes suggesting proteotoxic stress and degradation of misfolded CBS. Co-expression of the main effector HSP70 or master regulator HSF1 rescued steady-state levels of CBS I278T and R125Q variants with partial functional rescue of the latter. Pharmacological proteostasis modulators partially rescued expression and activity of CBS R125Q likely due to reduced proteotoxic stress as indicated by decreased BiP levels and promotion of refolding as indicated by induction of HSP70. In conclusion, targeted manipulation of cellular proteostasis may represent a viable therapeutic approach for the permissive pathogenic CBS variants causing HCU.


Subject(s)
Cystathionine beta-Synthase , Homocystinuria , Humans , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/chemistry , Cystathionine beta-Synthase/metabolism , Homocystinuria/drug therapy , Homocystinuria/genetics , Homocystinuria/metabolism , Cystathionine/metabolism , Cystathionine/therapeutic use , Proteostasis , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism
14.
Int J Mol Sci ; 24(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138989

ABSTRACT

Regulatory adenine nucleotide-binding cystathionine ß-synthase (CBS) domains are widespread in proteins; however, information on the mechanism of their modulating effects on protein function is scarce. The difficulty in obtaining structural data for such proteins is ascribed to their unusual flexibility and propensity to form higher-order oligomeric structures. In this study, we deleted the most movable domain from the catalytic part of a CBS domain-containing bacterial inorganic pyrophosphatase (CBS-PPase) and characterized the deletion variant both structurally and functionally. The truncated CBS-PPase was inactive but retained the homotetrameric structure of the full-size enzyme and its ability to bind a fluorescent AMP analog (inhibitor) and diadenosine tetraphosphate (activator) with the same or greater affinity. The deletion stabilized the protein structure against thermal unfolding, suggesting that the deleted domain destabilizes the structure in the full-size protein. A "linear" 3D structure with an unusual type of domain swapping predicted for the truncated CBS-PPase by Alphafold2 was confirmed by single-particle electron microscopy. The results suggest a dual role for the CBS domains in CBS-PPase regulation: they allow for enzyme tetramerization, which impedes the motion of one catalytic domain, and bind adenine nucleotides to mitigate or aggravate this effect.


Subject(s)
Cystathionine beta-Synthase , Pyrophosphatases , Pyrophosphatases/metabolism , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Catalytic Domain , Bacterial Proteins/metabolism , Nucleotides
15.
Redox Biol ; 68: 102958, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37948927

ABSTRACT

Astrocytic dysfunction is central to age-related neurodegenerative diseases. However, the mechanisms leading to astrocytic dysfunction are not well understood. We identify that among the diverse cellular constituents of the brain, murine and human astrocytes are enriched in the expression of CBS. Depleting CBS in astrocytes causes mitochondrial dysfunction, increases the production of reactive oxygen species (ROS) and decreases cellular bioenergetics that can be partially rescued by exogenous H2S supplementation or by re-expressing CBS. Conversely, the CBS/H2S axis, associated protein persulfidation and proliferation are decreased in astrocytes upon oxidative stress which can be rescued by exogenous H2S supplementation. Here we reveal that in the aging brain, the CBS/H2S axis is downregulated leading to decreased protein persulfidation, together augmenting oxidative stress. Our findings uncover an important protective role of the CBS/H2S axis in astrocytes that may be disrupted in the aged brain.


Subject(s)
Aging , Astrocytes , Brain , Cystathionine beta-Synthase , Aged , Animals , Humans , Mice , Aging/metabolism , Aging/pathology , Astrocytes/metabolism , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Cystathionine/metabolism , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism
16.
Int J Mol Sci ; 24(21)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37958692

ABSTRACT

Traumatic brain injury (TBI) is one of the leading causes of disability and death worldwide. It is characterized by various molecular-cellular events, with the main ones being apoptosis and damage to axons. To date, there are no clinically effective neuroprotective drugs. In this study, we examined the role of hydrogen sulfide (H2S) in the localization and expression of the key pro-apoptotic protein p53, as well as cell death in the nervous tissue in TBI and axotomy. We used a fast donor (sodium sulphide, Na2S) H2S and a classic inhibitor (aminooxyacetic acid, AOAA) of cystathionine ß-synthase (CBS), which is a key enzyme in H2S synthesis. These studies were carried out on three models of neurotrauma in vertebrates and invertebrates. As a result, it was found that Na2S exhibits a pronounced neuroprotective effect that reduces the number of TUNEL-positive neurons and glial cells in TBI and apoptotic glia in axotomy. This effect could be realized through the Na2S-dependent decrease in the level of p53 in the cells of the nervous tissue of vertebrates and invertebrates, which we observed in our study. We also observed the opposite effect when using AOAA, which indicates the important role of CBS in the regulation of p53 expression and death of neurons and glial cells in TBI and axotomy.


Subject(s)
Brain Injuries, Traumatic , Hydrogen Sulfide , Nerve Tissue , Neuroprotective Agents , Animals , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Tumor Suppressor Protein p53/metabolism , Axotomy , Apoptosis , Nerve Tissue/metabolism , Neuroprotective Agents/pharmacology , Cystathionine beta-Synthase/metabolism
17.
Int J Mol Sci ; 24(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003521

ABSTRACT

Over the past decades, the problem of bacterial resistance to most antibiotics has become a serious threat to patients' survival. Nevertheless, antibiotics of a novel class have not been approved since the 1980s. The development of antibiotic potentiators is an appealing alternative to the challenging process of searching for new antimicrobials. Production of H2S-one of the leading defense mechanisms crucial for bacterial survival-can be influenced by the inhibition of relevant enzymes: bacterial cystathionine γ-lyase (bCSE), bacterial cystathionine ß-synthase (bCBS), or 3-mercaptopyruvate sulfurtransferase (MST). The first one makes the main contribution to H2S generation. Herein, we present data on the synthesis, in silico analyses, and enzymatic and microbiological assays of novel bCSE inhibitors. Combined molecular docking and molecular dynamics analyses revealed a novel binding mode of these ligands to bCSE. Lead compound 2a manifested strong potentiating activity when applied in combination with some commonly used antibiotics against multidrug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. The compound was found to have favorable in vitro absorption, distribution, metabolism, excretion, and toxicity parameters. The high effectiveness and safety of compound 2a makes it a promising candidate for enhancing the activity of antibiotics against high-priority pathogens.


Subject(s)
Hydrogen Sulfide , Methicillin-Resistant Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Hydrogen Sulfide/metabolism , Cystathionine gamma-Lyase/metabolism , Methicillin-Resistant Staphylococcus aureus/metabolism , Pyrroles/pharmacology , Molecular Docking Simulation , Bacteria/metabolism , Indoles/pharmacology , Cystathionine beta-Synthase/metabolism
18.
J Biol Chem ; 299(12): 105449, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37949228

ABSTRACT

Cystathionine ß-synthase (CBS) catalyzes the committing step in the transsulfuration pathway, which is important for clearing homocysteine and furnishing cysteine. The transsulfuration pathway also generates H2S, a signaling molecule. CBS is a modular protein with a heme and pyridoxal phosphate-binding catalytic core, which is separated by a linker region from the C-terminal regulatory domain that binds S-adenosylmethionine (AdoMet), an allosteric activator. Recent cryo-EM structures reveal that CBS exists in a fibrillar form and undergoes a dramatic architectural rearrangement between the basal and AdoMet-bound states. CBS is the single most common locus of mutations associated with homocystinuria, and, in this study, we have characterized three clinical variants (K384E/N and M391I), which reside in the linker region. The native fibrillar form is destabilized in the variants, and differences in their limited proteolytic fingerprints also reveal conformational alterations. The crystal structure of the truncated K384N variant, lacking the regulatory domain, reveals that the overall fold of the catalytic core is unperturbed. M391I CBS exhibits a modest (1.4-fold) decrease while the K384E/N variants exhibit a significant (∼8-fold) decrease in basal activity, which is either unresponsive to or inhibited by AdoMet. Pre-steady state kinetic analyses reveal that the K384E/N substitutions exhibit pleiotropic effects and that the differences between them are expressed in the second half reaction, that is, homocysteine binding and reaction with the aminoacrylate intermediate. Together, these studies point to an important role for the linker in stabilizing the higher-order oligomeric structure of CBS and enabling AdoMet-dependent regulation.


Subject(s)
Cystathionine beta-Synthase , Mutation , Humans , Allosteric Regulation/genetics , Crystallography, X-Ray , Cystathionine beta-Synthase/chemistry , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Homocysteine/metabolism , Homocystinuria/enzymology , Homocystinuria/genetics , Kinetics , S-Adenosylmethionine/metabolism , Protein Conformation , Catalytic Domain
19.
Eur J Med Res ; 28(1): 540, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38007457

ABSTRACT

Activating transcription factor 6 (ATF6) is an endoplasmic reticulum stress responsive gene. We previously reported that conditional knockout of hepatic ATF6 exacerbated liver metabolic damage by repressing autophagy through mTOR pathway. However, the mechanism by which ATF6 influence liver metabolism has not been well established. Hydrogen sulfide (H2S) is a gaseous signaling molecule that plays an important role in regulating inflammation, and suppress nonalcoholic fatty liver in mice. Based on the previous study, we assumed that ATF6 may regulate H2S production to participate in liver metabolism. In order to clarify the mechanism by which ATF6 regulates H2S synthesis to ameliorate liver steatosis and inflammatory environment, we conducted the present study. We used the liver specific ATF6 knockout mice and fed on high-fat-diet, and found that H2S level was significantly downregulated in hepatic ATF6 knockout mice. Restoring H2S by the administration of slow H2S releasing agent GYY4137 ameliorated the hepatic steatosis and glucose tolerance. ATF6 directly binds to the promoter of cystathionine ß synthetase (CBS), an important enzyme in H2S synthesis. Thus, ATF6 could upregulate H2S production through CBS. Sulfhydrated Sirtuin-1 (SIRT1) was downregulated in ATF6 knockout mice. The expression of pro-inflammatory factor IL-17A was upregulated and anti-inflammatory factor IL-10 was downregulated in ATF6 knockout mice. Our results suggest that ATF6 can transcriptionally enhance CBS expression as well as H2S synthesis. ATF6 increases SIRT1 sulfhydration and ameliorates lipogenesis and inflammation in the fatty liver. Therefore, ATF6 could be a novel therapeutic strategy for high-fat diet induced fatty liver metabolic abnormalities.


Subject(s)
Fatty Liver , Hydrogen Sulfide , Animals , Mice , Activating Transcription Factor 6/metabolism , Cystathionine/metabolism , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Inflammation/metabolism , Ligases/metabolism , Liver/metabolism , Mice, Knockout , Sirtuin 1/metabolism
20.
Biomolecules ; 13(10)2023 10 07.
Article in English | MEDLINE | ID: mdl-37892173

ABSTRACT

This study was performed on human primary (WM115) and metastatic (WM266-4) melanoma cell lines developed from the same individual. The expression of proteins involved in L-cysteine metabolism (sulfurtransferases, and cystathionine ß-synthase) and antioxidative processes (thioredoxin, thioredoxin reductase-1, glutathione peroxidase, superoxide dismutase 1) as well as the level of sufane sulfur, and cell proliferation under hypoxic conditions were investigated. Hypoxia in WM115 and WM266-4 cells was confirmed by induced expression of carbonic anhydrase IX and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 by the RT-PCR and Western blot methods. It was shown that, under hypoxic conditions the inhibition of WM115 and WM266-4 melanoma cell proliferation was associated with decreased expression of thioredoxin reductase-1 and cystathionine ß-synthase. These two enzymes may be important therapeutic targets in the treatment of melanoma. Interestingly, it was also found that in normoxia the expression and activity of 3-mercaptopyruvate sulfurtransferase in metastatic WM266-4 melanoma cells was significantly higher than in primary melanoma WM115 cells.


Subject(s)
Antioxidants , Melanoma , Humans , Cysteine/metabolism , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Thioredoxin-Disulfide Reductase , Melanoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...